Petrel Classification and Estimation Popular
The Petrel Classification and Estimation module enables the use of neural networks and train estimation models to help estimate properties or probabilities. Combining several different data objects or attributes, the module increases interpretation confidence and accuracy during reservoir modeling by ensuring integration of all available data, regardless of the domain.
Lithology can be isolated and classified along the wellbore, based on acquired and interpreted logs, and missing logs can be estimated based on other wells present in the project. 3D seismic facies classifications identify lithology according to combined seismic attributes. Trend modeling capabilities, incorporating 1D, 2D, and 3D data, geological concepts, and analogs, enable you to reproduce realistic sedimentary environments.
Features
- A train estimation model is a set of tools for neural network analysis, enabling you to train an estimation or classification model and store it as an object in the project.
- Geometrical trend modeling allows you to create a variety of geometrical properties from polylines to control the spatial distribution of facies and petrophysical properties.
- Combining different fracture drivers, such as geometrical properties and seismic attributes, you can create a final 3D property trend that will guide fracture distribution in the 3D grid.
- Using polylines to represent centerlines of channel fairways, boundaries between facies, or any other observed or conceptual linear feature, you can create geometrical trends for reservoir modeling.
Listing Details
Don't Miss Out! Get the Best Deal on this Software - Email Us Now!